Development of n*-ZnO/n-Si photodetector with wavelength-selective operation

M. D. Tsanakas and ™M. Kandyla

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation,
48 Vasileos Constantinou Ave., 11635 Athens, Greece

⊠Corresponding author: kandyla@eie.gr

Figure 1: n⁺-ZnO/n-Si photodiode

In this presentation we will discuss the development and operation of broadband n⁺-ZnO/n-Si photodetectors. Three ZnO thin films were developed by Atomic Layer Deposition (ALD) on n-Si at three different temperatures (100 °C, 150 °C, and 200 °C), forming three different photodetecting devices.

Current-voltage measurements exhibit broadband photoresponse of the devices, across the UV-visible-NIR. The photo-detectors are able to distinguish between UV-vis and NIR illumination by producing opposite photocurrents, demonstrating wavelength-selective operation. By utilizing pulsed light, the response times of the

photodetectors were investigated for different pulse frequencies and wavelengths. The devices show response times as low as 40 μs at a pulse frequency of 400 Hz. The ZnO film developed at 150 °C exhibited the most promising results with a responsivity of 0.242 A/W and a detectivity of 42·10¹² Jones.